

Transport of driven colloids in optical landscapes

Roel Dullens

Department of Chemistry
Physical and Theoretical Chemistry Laboratory University of Oxford

Outline

Transport of driven colloids in optical landscapes

- Synchronisation: dynamic mode locking
- 1 particle $D C$ driven
- 1 particle $D C+A C$ driven: dynamic mode locking
- N particles $D C+A C$ driven: dynamic mode locking of a kink
- Depinning of finite colloidal chains: Aubry-type transition
- N particles DC driven

Outline

Transport of driven colloids in optical landscapes

- Synchronisation: dynamic mode locking
- 1 particle DC driven
- 1 particle $D C+A C$ driven: dynamic mode locking
- N particles $D C+A C$ driven: dynamic mode locking of a kink
- Depinning of finite colloidal chains: Aubry-type transition
- N particles $D C$ driven

Synchronisation

The adjustment of rhythms due to an interaction is the essence of synchronisation

Christiaan Huygens (1629-1695)

... we suspended two clocks so constructed from two hooks imbedded in the same wooden beam ... the motions of each pendulum in opposite swings were so much in agreement that they never receded the least bit from each other ... the cause of this is due to the motion of the beam, even though this is hardly perceptible.

Synchronisation of coupled oscillators

$$
\begin{gathered}
\Delta \nu=\nu_{1}-\nu_{2} \\
\Delta N=N_{1}-N_{2}
\end{gathered}
$$

region

Synchronisation by external forcing

Huygens in the $21^{\text {st }}$ century
Radio-controlled clocks: relatively non-precise clocks are made perfect by being adjusted by a periodic radio signal

RADIO CONTROLLED
$\nu_{\text {ext }}$

Synchronisation by external forcing

- Oscillator $\left(v_{0}\right)$ synchronises to external modulation $\left(v_{\text {ext }}\right)$

RADIO CONTROLLED

Synchronisation $=$
ynamic mode locking
$\nu_{0} \approx n \nu_{\mathrm{ext}}$
$\nu_{\mathrm{obs}}=n \nu_{\mathrm{ext}}$

Dynamic mode locking

- Driven Josephson junctions (Shapiro steps)
- Charge density waves
- Vortex lattices
- Ring laser gyros

Fig. 1. Voltage-current curves for a Nb-Nb point-contact Josephson junction exposed to a $72-\mathrm{Gc} / \mathrm{sec}$ signal at various power levels.
Equation of motion of a driven oscillator

$$
\zeta \frac{d \phi}{d t}=F_{e x t}+b \sin \phi
$$

Only averaged properties studied Microscopic dynamics difficult to visualise

Dynamic mode locking in driven colloids

Equation of motion of a driven oscillator

Experimental details

- $3 \mu \mathrm{~m}$ diameter polystyrene, paramagnetic particles in $20 \% \mathrm{EtOH}_{(\mathrm{aq})}$
- 1D sinusoidal potential energy landscape: optical tweezers

Experimental details

- $3 \mu \mathrm{~m}$ diameter polystyrene, paramagnetic particles in $20 \% \mathrm{EtOH}_{(\mathrm{aq})}$
- 1D sinusoidal potential energy landscape: optical tweezers
- Piezo stage: DC and/or AC driving velocity with frequency ν
- Video-microscopy: obtain particle trajectory $x(t)$
- Trajectory gives average velocity \bar{v} and instantaneous velocity $v(t)$

Outline

Transport of driven colloids in optical landscapes

- Synchronisation: dynamic mode locking
- 1 particle DC driven
- 1 particle $D C+A C$ driven: dynamic mode locking
- N particles $D C+A C$ driven: dynamic mode locking of a kink
- Depinning of finite colloidal chains: Aubry-type transition
- N particles $D C$ driven

DC drive over a sinusoidal potential

$\lambda=3.50 \mu \mathrm{~m}, V_{\mathrm{DC}}=2.25 \mu \mathrm{~m} \mathrm{~s}^{-1}$

- Sinusoidal optical potential energy landscape: $\quad F_{T}(x) \sim \sin \left(\frac{2 \pi x}{\lambda}\right)$

Average velocity of DC driven particle

$$
\begin{gathered}
\frac{d x}{d t}=v_{D C}+\frac{F_{T}(x)}{\zeta} \\
F_{T}(x) \sim \sin \left(\frac{2 \pi x}{\lambda}\right) \\
\downarrow \\
\bar{v}=\sqrt{v_{\mathrm{DC}}^{2}-v_{\mathrm{C}}^{2}}
\end{gathered}
$$

Importantly

DC driven colloid particle $=$ oscillator with frequency $\nu_{0}=v_{\mathrm{DC}} / \lambda$

Outline

Transport of driven colloids in optical landscapes

- Synchronisation: dynamic mode locking
- 1 particle DC driven
- 1 particle $D C+A C$ driven: dynamic mode locking
- N particles $D C+A C$ driven: dynamic mode locking of a kink
- Depinning of finite colloidal chains: Aubry-type transition
- N particles $D C$ driven

DC + AC drive over a sinusoidal potential

$$
\begin{aligned}
& \lambda=3.5 \mu \mathrm{~m} V_{\mathrm{AC}}=5.2 \mu \mathrm{~m} \mathrm{~s}^{-1} \\
& \nu=0.75 \mathrm{~Hz} V_{\mathrm{DC}}=5.833 \mu \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Dynamic mode locking (DC + AC drive)

Synchronisation:
$\bar{v}=n \lambda \nu$

Average driving velocity, $v_{\mathrm{DC}}\left(\mu \mathrm{m} \mathrm{s}^{-1}\right)$

"Devil's staircase": mode locking steps

$$
\begin{aligned}
& \lambda=3.5 \mu \mathrm{~m} V_{\mathrm{AC}}=5.2 \mu \mathrm{~m} \mathrm{~s}^{-1} \\
& \nu_{1}=0.75 \mathrm{~Hz} V_{\mathrm{DC}}=5.033 \mu \mathrm{~m} \mathrm{~s}^{-1} \\
& \lambda=3.5 \mu \mathrm{~m} V_{\mathrm{AC}}=5.2 \mu \mathrm{~m} \mathrm{~s}^{-1} \\
& \nu=0.75 \mathrm{~Hz} V_{\mathrm{DC}}=5.833 \mu \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

Periodic motion: phase portraits

Phase:

$$
\varphi=\frac{2 \pi}{\lambda}(x(t)-\bar{v} t)
$$

Phase velocity:

$$
\frac{\mathrm{d} \varphi}{\mathrm{~d} t}=\frac{2 \pi}{\lambda}(v-\bar{v})
$$

Locked and unlocked states

Average driving velocity, $v_{D C}\left(\mu \mathrm{~m} \mathrm{~s}^{-1}\right)$
Phase, φ

State diagram of locked states

$n(i, j)$:
$-n$: net λ 's moved
$-i$: positive steps
$-j$: negative steps

AC amplitude, $v_{\mathrm{AC}}\left(\mu \mathrm{m} \mathrm{s}^{-1}\right)$

Same average velocity, different modes

- Single colloidal particles show dynamic mode locking behaviour
- Colloidal model system allows access to microscopic details

Outline

Transport of driven colloids in optical landscapes

- Synchronisation: dynamic mode locking
- 1 particle DC driven
- 1 particle $D C+A C$ driven: dynamic mode locking
- N particles $D C+A C$ driven: dynamic mode locking of a kink
- Depinning of finite colloidal chains: Aubry-type transition
- N particles $D C$ driven

Driving a coupled system ($D C+A C$)

Magnetic field B

- Chain of 7 magnetically coupled particles (diameter $\sigma=3 \mu \mathrm{~m}$)

$$
\Gamma=\frac{U(r=\sigma)}{k_{B} T} \sim \frac{B^{2}}{\sigma^{3}}
$$

- Flexible chain $(\Gamma=15)$ and stiff chain $(\Gamma=392)$
- Sinusoidal landscape $\lambda=3.5 \mu \mathrm{~m}$
- Chain position $=$ mean of coordinates of terminal particles

Flexible chain: enhanced mode locking

- $1^{\text {st }}(10)$ step 16% and $2^{\text {nd }}(20)$ step almost 50% wider for flexible chain

Chain length oscillations

- Flexible chain: chain length and velocity oscillate out of phase
- Breathing mode: density wave (or kink) traveling through mobile chain
- Kink velocity much faster than chain velocity \longrightarrow hard to resolve

Visualising a $D C+A C$ driven artificial kink in a pinned chain

- 15 strong optical traps, 16 particles
- Extra particle displaces others generating a kink
- Weak magnetic field holds particles in line
- Tracking the kink

Mode locking of a kink

- Confirms dynamic mode locking of a traveling density wave (or kink)

Outline

Transport of driven colloids in optical landscapes

- Synchronisation: dynamic mode locking
- 1 particle DC driven
- 1 particle $D C+A C$ driven: dynamic mode locking
- N particles $D C+A C$ driven: dynamic mode locking of a kink
- Depinning of finite colloidal chains: Aubry-type transition
- N particles $D C$ driven

Aubry transition

Superlubricity due to incommensurate competing length scales

Serge Aubry

At a critical value of the substrate potential, an infinitely long 1D chain incommensurate with the substrate undergoes a transition from a pinned to a free-sliding state.

Nanofriction in cold ion traps: A. Benassi et al, Nat. Commun. 2, 236 (2011)
Aubry-type transition in cold atoms: A. Bylinskii et al, Nat. Mater. 15, 717 (2016)
Aubry transition in 2D colloidal monolayers: T. Brazda et al, Phys. Rev. X 8, 011050 (2018)

Driven finite colloidal chains (DC)

Magnetic field B

- Sinusoidal landscape λ varied between 3 and $3.9 \mu \mathrm{~m}$, fixed depth
- Chain of $N=1$ - 25 magnetically coupled particles (diameter $\sigma=3 \mu \mathrm{~m}$)

$$
\Gamma=\frac{U(r=\sigma)}{k_{B} T} \sim \frac{B^{2}}{\sigma^{3}}
$$

- Fixed chain stiffness ($\Gamma=174$ - not too stiff and too flexible)
- Measure critical driving velocity upon increasing N with resolution $\sim f N$

Critical velocity for a single particle

Critical velocity for $N=2$

Critical velocity for $N=3$

Critical velocity for $N=4$

Critical velocity for $N=5$

- At $N=5$ critical driving velocity vanishes ...

Critical velocity for $N=5$

Potential energy of chain as $f(x)$

$$
U_{n}(x)=-\frac{\lambda F_{C}}{2 \pi} \sum_{j=1}^{n} \cos \left[\left(\frac{2 \pi x}{\lambda}\right)-\left(\frac{2 \pi s}{\lambda}(j-1)\right)\right]
$$

- Assuming fixed interparticle spacing s
- $N=5$: 'no' change of U with respect to x

Critical velocity for $N>5$

Potential 'depth' as a function of \boldsymbol{N}

- Periodic vanishing of critical velocity

Critical velocity for N up to 25

Different wavelengths of the landscape

$$
v_{n}^{*}=\frac{2 F_{\mathrm{C}}}{(n+1) \zeta_{1}}\left|\frac{\sin (\pi n(s-\lambda) / \lambda)}{\sin (\pi(s-\lambda) / \lambda)}\right|
$$

- Periodically vanishing friction

- Entirely determined by interplay of s and λ

Summary

- Driven colloid particles and chains in periodic optical potential energy landscapes show dynamic mode locking
- Colloidal model system allows access to microscopic details
- Phase portrait fingerprint of nature of the mode
- Periodically vanishing friction of finite colloidal chains
- M.P.N. Juniper et al., Nature Commun. 6, 7187 (2015)
- M.P.N. Juniper et al., Phys. Rev. E 93, 012608 (2016)
- M.P.N. Juniper et al., New J. Phys. 19, 013010 (2017)
- J.L. Abbott et al., in preparation (2019)

Thanks to:

- Michael Juniper, University of Oxford
- Joshua Abbott, University of Oxford
- Urs Zimmermann, Heinrich-Heine University Duesseldorf
- Arthur Straube, Free University, Berlin, Germany
- Rut Besseling, InProcess-LSP, Oss, Netherlands
- Dirk Aarts, University of Oxford
- Hartmut Loewen, Heinrich-Heine University Duesseldorf

Δ
THE ROYAL SOCIETY

Engineering and Physical Sciences Research Council

