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Transport of driven colloids in optical landscapes

• Synchronisation: dynamic mode locking

• 1 particle DC driven

• 1 particle DC + AC driven: dynamic mode locking

• N particles DC + AC driven: dynamic mode locking of a kink

• Depinning of finite colloidal chains: Aubry-type transition

• N particles DC driven
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Synchronisation
The adjustment of rhythms due to an interaction is the essence of synchronisation

Christiaan Huygens (1629-1695)

... we suspended two clocks so constructed from two hooks 
imbedded in the same wooden beam ... the motions of each 
pendulum in opposite swings were so much in agreement 
that they never receded the least bit from each other ... the 
cause of this is due to the motion of the beam, even though 
this is hardly perceptible.

Pikovsky, Rosenblum, and Kurths, Synchronization, Cambridge University Press (2001)
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12 Introduction

on the frequency mismatch. Imagine that we perform the following experiment.
First we separate two clocks (e.g., we put them in different rooms) and measure
their frequencies f1 and f2. Having done this, we put the clocks on a common
support, and measure the frequencies F1 and F2 of the coupled systems. We can
carry out these measurements for different values of the detuning to obtain the
dependence of !F = F1 − F2 on ! f . Plotting this dependence we get a curve
as shown in Fig. 1.9, which is typical for interacting oscillators, independent of
their nature (mechanical, chemical, electronic, etc.). Analyzing this curve we see
that if the mismatch of autonomous systems is not very large, the frequencies of
two clocks (two systems) become equal, or entrained, i.e., synchronization takes
place. We emphasize that the frequencies f1,2 and F1,2 have to be measured for
the same objects, but in different experimental conditions: f1,2 characterize free
(uncoupled, or autonomous) oscillators, whereas the frequencies F1,2 are obtained
in the presence of coupling. Generally, we expect the width of the synchronization
region to increase with coupling strength.

A close examination of synchronous states reveals that the synchronization of
two clocks can appear in different forms. It may happen that two pendula swing in a
similar manner: for example, they both move to the left, nearly simultaneously attain
the leftmost position and start to move to the right, nearly simultaneously cross the
vertical line, and so on. The positions of the pendula then evolve in time in the way
shown in Fig. 1.10a. Alternatively, one may find that two pendula always move in
opposite directions: when the first pendulum attains, say, the leftmost position, the
second pendulum attains the rightmost one; when they cross the vertical line, they
move in opposite directions (Fig. 1.10b). To describe these two obviously distinct
regimes, we introduce the key notion of synchronization theory, namely the phase
of an oscillator.

We understand the phase as a quantity that increases by 2π within one oscil-
latory cycle, proportional to the fraction of the period (Fig. 1.11). The phase un-
ambiguously determines the state of a periodic oscillator; like time, it parametrizes
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Figure 1.9. Frequency vs.
detuning plot for a certain
fixed strength of interaction.
The difference of
frequencies !F of two
coupled oscillators is plotted
vs. the detuning (frequency
mismatch) ! f of uncoupled
systems. For a certain range
of detuning the frequencies
of coupled oscillators are
identical (!F = 0),
indicating synchronization.
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Synchronisation by external forcing
Huygens in the 21st century

Radio-controlled clocks: relatively non-precise clocks are 
made perfect by being adjusted by a periodic radio signal
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Synchronisation by external forcing
• Oscillator (v0) synchronises to external modulation (next)
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MILLIMETER-WAVE MIXING WITH JOSEPHSON JUNCTIONS
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pro. ]. Voltage-current curves for a Nb-Nb point-contact Josephson junction exposed to a 72-Gc/sec signal at various power leveis.
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Some junctions were tested that had more or less
prominent subharmonic structure in their V-I curves
in the presence of rf. Such structure, which occurs at
voltages given by nscoo——ego, is characteristic of metallic
bridges" between the superconductors forming the
junction. A mixed-frequency signal associated with the
subharmonic steps was observed similar to that de-
scribed later associated with the main steps. However,
no detailed study of such junctions was undertaken
and attention is confined in the balance of this paper
to the behavior of junctions similar to that of Figs. 1
and 2.
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Fn. 2. Data from Fig. 1 plotted to display how the current in
several constant-voltage steps varies as the applied rf voltage is
varied. The data points from the nth step are compared with the
amplitude of the nth-order Bessel function which is the behavior
expected for an ideal tunnel junction. The data were fitted to the
theoretical curves at the two points denoted by double circles.
The rf voltage across the junction is expressed in units of hf/2e
or 149 yV per division.

A schematic block diagram, applicable to all the
mixing experiments, is shown in Fig. 3. The signals from
each of two separate rf sources, labeled klystron A
and klystron 8, passed along a waveguide containing a
ferrite isolator, a wavemeter and a precision attenuator
before being combined in a waveguide "tee."Thus each
source was isolated from the other as well as from
junction reflections and both the frequency and ampli-
tude of each source could be separately measured and
adjusted. The combined rf signals passed into the
helium Dewar via a section of appropriately sized
waveguide and fell onto the junction mounted across
the waveguide near its termination. The waveguide
was left open at its end. The mixed frequency, or
intermediate frequency (i.f.), was on the order of
I Mc/sec and was brought out via a coaxial line con-
nected directly across the voltage terminals of the
junction. The i.f. was amplified in a Tektronix type
1A7 rf amplifier. The output of the amplifier was in
turn rectified and, when desired, switched to the V
terminals of a Moseley 7000-A X-V recorder where it
wa, s plotted as the i,f. amplitude. The junction bias

Dynamic mode locking
• Driven Josephson junctions (Shapiro steps)
• Charge density waves

• Vortex lattices
• Ring laser gyros

• ...

Only averaged properties studied
Microscopic dynamics difficult to visualise
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Equation of motion of a driven oscillator

C.C. Grimes, and S. Shapiro, Phys. Rev. 44, 2850 (1968), D. Reguera et al, Europhys. Lett. 57, 644 (2002)



Dynamic mode locking in driven colloids

⇣
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Equation of motion of a driven oscillator

Equation of motion of a driven colloid in a periodic potential
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Experimental details
• 3 µm diameter polystyrene, paramagnetic particles in 20% EtOH(aq)

• 1D sinusoidal potential energy landscape: optical tweezers

JUNIPER, STRAUBE, AARTS, AND DULLENS PHYSICAL REVIEW E 93, 012608 (2016)
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FIG. 1. (a) Schematic of the experimental geometry. A one-
dimensional periodic optical potential energy landscape, UT(x), is
generated by a line of overlapping optical traps created from focused
laser spots, time shared using acousto-optical deflectors, separated by
a spacing λ. A spherical colloidal particle sedimented to the bottom of
the sample cell is driven across the landscape by a constant force FDC.
(b) The optical potential energy landscape, UT(x), corresponds to a
trap spacing of λ = 3.5 µm and a laser power per trap of 0.75 mW.
The tilted “washboard” potential, U (x), for FDC/ζ = 2.25 µm s−1 is
shown in the lower panel. The symbols are the experimental data and
the solid black line a fit with sine function. The solid orange line in
the lower panel illustrates a hypothetical tilted washboard potential
corresponding to a subcritical driving force, which leads to finite
barriers in the potential.

driving force, FDC, the force from the optical potential energy
landscape, FT(x) = −∂UT/∂x, the Brownian force, ξ (t), and
the friction coefficient, ζ . The impact of thermal fluctuations
is modeled by Gaussian white noise, such that ⟨ξ (t)⟩ = 0 and
⟨ξ (t)ξ (t ′)⟩ = 2ζkBT δ(t − t ′), where kBT is thermal energy.
Thus, in the case where UT(x) represents a spatially periodic
landscape with a wavelength, λ, Eq. (1) describes the motion
of a Brownian particle in a tilted “washboard” potential,
U (x) = −xFDC + UT(x), where FDC determines the tilt (see
Fig. 1).

The relative importance of the deterministic and stochastic
parts of Eq. (1) may be quantified using the Péclet number.
We define this in our context as the ratio of the time taken

for the particle to diffuse over a distance equivalent to one
wavelength of the landscape (the “Brownian time,” τB = λ2/D
with D = kBT/ζ being the diffusion coefficient) and the time
taken for the particle to be driven over one wavelength of the
landscape, τD = λ/v, where v is the average particle velocity:

Pe = τB

τD
= ζ λ v

kBT
. (2)

The time taken for the particle to be driven over one wavelength
of the landscape, τD, results from the balance between the
driving force and the force due to the optical potential energy
landscape and thus contains the average particle velocity rather
than the driving velocity.

When Pe ≫ 1, the effect of diffusion is negligible relative
to the driving force, but as Pe → 1, diffusion becomes more
important. To simplify the analysis of Eq. (1), we will neglect
the stochastic force term, ξ (t), for now. This approximation is
instructive and is justified because the Péclet number is much
higher than unity for most driving velocities used here. The
(deterministic) equation of motion thus becomes:

ζ
dx(t)
dt

= FDC + FT(x) . (3)

To define the periodic optical potential energy landscape,
UT(x), we assume that the landscape extends infinitely, from
trap i = −∞ to trap i = ∞, with traps separated by a spacing
λ. Each individual trap i is modelled by a Gaussian well Vi(x)
of depth V0 and stiffness k [22,24,49,50],

Vi(x) = −V0 exp
[
−k(x − λi)2

2V0

]
. (4)

We stress that although in the vicinity of the trap center,
|x − λi| ≪ λ, Eq. (4) reduces to the conventionally used
harmonic potential, Vi(x) = k(x − λi)2/2, the harmonic ap-
proximation generally fails to properly describe the energy
landscape; see also Refs. [49,51], where the nonharmonic na-
ture of the optical potential is crucial for capturing equilibrium
and nonequilibrium pattern formation. As shown in Ref. [50],
individual potentials are additive, so the potential landscape
may be expressed as UT(x) =

∑∞
i=−∞ Vi(x), which leads to

an optical force,

FT(x) = −k

∞∑

i=−∞
(x − λi) exp

[
−k(x − λi)2

2V0

]
. (5)

In the experiments, two main observables are considered:
the average particle velocity over an integer number of
wavelengths of the landscape, v, and the critical driving
velocity, FC/ζ , required for the particle to move. First,
we consider the average particle velocity. For the periodic
landscape, the time, 't , in which the particle passes a
single wavelength of the landscape, λ, is [see Eq. (3)]:
't = ζ

∫ λ/2
−λ/2 [FDC + FT(x)]−1dx. It therefore follows that in

the deterministic regime:

v = λ

't
= λ

[∫ λ/2

−λ/2

ζ

FDC + FT(x)
dx

]−1

. (6)

Next, the critical driving force required to cause the particle
to overcome a maximum in the optical force is considered. By
setting dx/dt = 0 in Eq. (3), we find a stationary solution,

012608-2



Experimental details

• 3 µm diameter polystyrene, paramagnetic particles in 20% EtOH(aq)

• 1D sinusoidal potential energy landscape: optical tweezers

• Piezo stage: DC and/or AC driving velocity with frequency

• Video-microscopy: obtain particle trajectory   

• Trajectory gives average velocity      and instantaneous velocity     v(t)v
x(t)
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vDC + vAC sin(2⇡⌫t)
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DC drive over a sinusoidal potential

VDC

vDC + vAC cos (2⇡⌫t)

Colloidal particles driven across periodic optical potential energy landscapes 59
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Figure 4.3: Trajectories of Brownian particles driven over a periodic potential. (a) Individual particle
trajectories for cases with differing trap spacings and driving velocities, but the same average velocity.
Lines are spaced in t for ease of comparison. (b) Particle velocity as a function of time for the four
trajectories in (a). (c) Particle velocity as a function of position, for the four trajectories in (a). The
dashed line in the bottom panel is at v = 2.7 µm s−1
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• Sinusoidal optical potential energy landscape:



Average velocity of DC driven particle

v̄ =
q
v2DC � v2C

dx

dt

= vDC +
FT (x)
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Importantly
DC driven colloid particle = oscillator with frequency             ⌫0 = vDC/�



Outline
Transport of driven colloids in optical landscapes

• Synchronisation: dynamic mode locking

• 1 particle DC driven

• 1 particle DC + AC driven: dynamic mode locking

• N particles DC + AC driven: dynamic mode locking of a kink

• Depinning of finite colloidal chains: Aubry-type transition

• N particles DC driven
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DC + AC drive over a sinusoidal potential
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Dynamic mode locking (DC + AC drive)

v = n�⌫
Synchronisation:



“Devil’s staircase”: mode locking steps
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Periodic motion: phase portraits
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Locked and unlocked states
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Same average velocity, different modes

• Single colloidal particles show dynamic mode locking behaviour

• Colloidal model system allows access to microscopic details



Outline
Transport of driven colloids in optical landscapes

• Synchronisation: dynamic mode locking

• 1 particle DC driven

• 1 particle DC + AC driven: dynamic mode locking

• N particles DC + AC driven: dynamic mode locking of a kink

• Depinning of finite colloidal chains: Aubry-type transition

• N particles DC driven



Driving a coupled system (DC + AC) 

• Chain of 7 magnetically coupled particles (diameter s = 3 µm)
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Figure 6.2: Two experimental systems of magnetically coupled colloidal particles. (a) Mobile chain of
N = 5 particles. λ = 3.5 µm, B = 0.6 mT, laser power per trap 0.75 mW. (b) Static (pinned) chain with
a single kink defect. Trap spacing λ = 5.5 µm, magnetic field strength B = 0.5 mT, laser power per trap
1.75 mW.

6.3.3 Critical velocity experiments

The DC driving velocity is iterated to find the critical average driving velocity at which the

chain starts to slide irreversibly across the optical potential energy landscape. The resolution

of this protocol is 0.05 µm s−1. A chain is said to be pinned to the landscape if it still returns

to its starting lattice position after the stage has moved 100 µm, or three minutes has elapsed,

whichever happens first. Magnetic field strengths below 0.43 mT are not considered, as below

this level the chains tend to break up irreversibly when driven, rather than remaining contiguous.

6.3.4 Average velocity experiments

The average chain velocity for mobile chains (see figure 6.2a) is found by linearly fitting the

trajectory of the centre of the chain, x(t), defined as the mean of the positions of the terminating

particles. Instantaneous velocity is found by taking the numerical derivative of x(t). The phase,
ϕ, is found from x(t) data by subtracting the line of average velocity, and multiplying by 2π/λ,
as explained in section 5.3.3. Phase velocity, dϕ

dt
, is calculated by subtracting average velocity

from the instantaneous velocity, and then multiplying by 2π/λ, as is also shown in section 5.3.3.

The phase and phase velocity for a kink are therefore defined as:

ϕ = 2π

λ
(x(t) − vt) and

dϕ

dt
= 2π

λ
(v(t) − v). (6.8)

Magnetic field B

• Flexible chain (G = 15) and stiff chain (G = 392)  

• Sinusoidal landscape l = 3.5 µm

• Chain position = mean of coordinates of terminal particles

� =
U(r = �)

kBT
⇠ B2

�3

vDC + vAC sin(2⇡⌫t)



Flexible chain: enhanced mode locking

• 1st (10) step 16% and 2nd (20) step almost 50% wider for flexible chain
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Chain length oscillations

116 Results and discussion

(a) (b)

(c) (d)

Figure 6.12: Chain of 7 particles in a magnetic field of strength Γ = 392kBT (B = 2.2 mT), driven by a
stage velocity of: (a,c) vDC = 2.500 µm s−1, (b,d) vDC = 5.233 µm s−1. (a,b) Trajectories for all 7 chain
particles. Top left inset: phase portrait for the chain centre. Bottom right inset: single period of the
oscillation of the chain centre. (c,d) Chain length (— bottom), and chain centre velocity (— top).

The easiest probe of the collective dynamics within the chain is to measure its length.

Panels (c) and (d) of figures 6.12 and 6.13 compare the length of the chain over time to the

instantaneous velocity of the chain centre. The length of the stiff chain at high magnetic field

strength for both steps (figure 6.12c,d) thermally fluctuates around ∼ 18 µm, which corresponds

to (N−1)σ, implying that generally all particles are touching. Importantly, there is no correlation

between the chain length and the instantaneous velocity. When the chain is flexible, however,

the story is quite different (see figure 6.13). Here the chain length is found to distinctly fluctuate.

For the first step (figure 6.13c), the fluctuations are on the order of 0.75 µm, around ∼ 18.5 µm.

Strikingly, they occur at exactly the frequency as the particle velocity fluctuations, but exactly

out of phase, such that the chain is at its maximum length when it is travelling at its minimum

velocity. The chain is generally stretched by the landscape to be longer than 18 µm, and is

stiff chain (G = 392) 

Coupled colloidal particles driven over periodic optical potential energy landscapes 117

(a) (b)

(c) (d)

Figure 6.13: Chain of 7 particles in a magnetic field of strength Γ = 15.0kBT (B = 0.43 mT), driven by
a stage velocity of: (a,c) vDC = 2.500 µm s−1, (b,d) vDC = 5.233 µm s−1. (a,b) Trajectories for all 7 chain
particles. Top left inset: phase portrait for the chain centre. Bottom right inset: single period of the
oscillation of the chain centre. (c,d) Chain length (— bottom), and chain centre velocity (— top).

only the minimum length when the chain is moving at maximum velocity. The fluctuations

for the second step (figure 6.13d) are generally slightly smaller, and centred closer to ∼ 18 µm,

but still clearly correlated to the instantaneous chain centre velocity. This is because at driving

velocities far from the critical driving velocity, the particles will feel the pinning of the potentials

less strongly.

The fact that the chain is shortest when travelling at a high velocity suggests that motion

is driven by the back of the chain, pushing on the front, reminiscent of a breathing mode [7].

Although the measurements presented here cannot resolve the mechanism of this effect, it is

likely that the breathing mode is related to a density wave travelling from the back of the chain

to the front, allowing the front particles to overcome the potential energy barrier. The stiff

chain is more incommensurate, and therefore has lower second critical points, and smaller steps.

flexible chain (G = 15)

• Flexible chain: chain length and velocity oscillate out of phase
• Breathing mode: density wave (or kink) traveling through mobile chain

• Kink velocity much faster than chain velocity          hard to resolve 



Visualising a DC + AC driven artificial kink 
in a pinned chain

• 15 strong optical traps, 16 particles

• Extra particle displaces others generating a kink

• Weak magnetic field holds particles in line

• Tracking the kink        

Driving velocity, v v tDC AC+ sin(2 )

a d

b e
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Mode locking of a kink

• Confirms dynamic mode locking of a traveling density wave (or kink)



Outline
Transport of driven colloids in optical landscapes

• Synchronisation: dynamic mode locking

• 1 particle DC driven

• 1 particle DC + AC driven: dynamic mode locking

• N particles DC + AC driven: dynamic mode locking of a kink

• Depinning of finite colloidal chains: Aubry-type transition

• N particles DC driven



Aubry transition
Superlubricity due to incommensurate competing length scales

Serge Aubry

At a critical value of the substrate potential,
an infinitely long 1D chain incommensurate
with the substrate undergoes a transition
from a pinned to a free-sliding state.

M. Peyrard and S. Aubry, J. Phys. C: Solid State Phys. 16, 1593 (1983)

Theory 77

U(x)

x

!

s

Figure 5.1: Schematic of the Frenkel-Kontorova model. Each particle interacts with the potential energy
landscape and the neighbouring particles in the chain. The only two length scales in this model are the
wavelength of the periodic potential, �, and the particle spacing, s.

tion has been studied [152] and is seen to exist in cold ion traps [69–73]. Colloidal systems have

also been used to model sample-substrate interactions and have successfully modelled a drop to

zero static friction in two dimensions [58, 74, 75]. The one-dimensional analogue cannot have a

mismatch angle between the driving direction and the symmetry of the landscape and instead

the static friction is only governed by the length scales of the particle size and the underlying

landscape and their interaction strength [153].

Here the motion of a finite colloidal chain driven through a static one-dimensional sinusoidal

optical potential energy landscape is studied. A chain is driven at a constant velocity to probe

an Aubry-type transition giving rise to zero static friction. The e↵ects of the chain sti↵ness

and commensurability on chain motion are then studied, and a model is developed for the case

of a completely rigid chain. Next, breathing modes of a flexible chain driven across a periodic

landscape are explored. Finally, oscillations are introduced to the driving velocity to probe

dynamic depinning of a chain for an average driving velocity below the critical velocity. Here,

the e↵ect of the oscillation frequency and the average driving velocity on chain motion is explored

with oscillations lowering the depinning threshold of chains.

5.2 Theory

Until now, the behaviour of a single driven particle in an optical potential energy landscape has

been considered. Here, the behaviour of a finite chain in such a landscape when subject to a

constant driving force is discussed with the aim of predicting the critical velocity of a chain.

Finally, the constant driving force is set below the critical driving force and the e↵ect of adding

an oscillatory driving force on chain motion is explored.

Aubry transition in 2D colloidal monolayers: T. Brazda et al, Phys. Rev. X 8, 011050 (2018)

Aubry-type transition in cold atoms: A. Bylinskii et al, Nat. Mater. 15, 717 (2016)

Nanofriction in cold ion traps: A. Benassi et al, Nat. Commun. 2, 236 (2011)



Driven finite colloidal chains (DC) 

• Sinusoidal landscape l varied between 3 and 3.9 µm, fixed depth

• Chain of N = 1 - 25 magnetically coupled particles (diameter s = 3 µm)
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Figure 6.2: Two experimental systems of magnetically coupled colloidal particles. (a) Mobile chain of
N = 5 particles. λ = 3.5 µm, B = 0.6 mT, laser power per trap 0.75 mW. (b) Static (pinned) chain with
a single kink defect. Trap spacing λ = 5.5 µm, magnetic field strength B = 0.5 mT, laser power per trap
1.75 mW.

6.3.3 Critical velocity experiments

The DC driving velocity is iterated to find the critical average driving velocity at which the

chain starts to slide irreversibly across the optical potential energy landscape. The resolution

of this protocol is 0.05 µm s−1. A chain is said to be pinned to the landscape if it still returns

to its starting lattice position after the stage has moved 100 µm, or three minutes has elapsed,

whichever happens first. Magnetic field strengths below 0.43 mT are not considered, as below

this level the chains tend to break up irreversibly when driven, rather than remaining contiguous.

6.3.4 Average velocity experiments

The average chain velocity for mobile chains (see figure 6.2a) is found by linearly fitting the

trajectory of the centre of the chain, x(t), defined as the mean of the positions of the terminating

particles. Instantaneous velocity is found by taking the numerical derivative of x(t). The phase,
ϕ, is found from x(t) data by subtracting the line of average velocity, and multiplying by 2π/λ,
as explained in section 5.3.3. Phase velocity, dϕ

dt
, is calculated by subtracting average velocity

from the instantaneous velocity, and then multiplying by 2π/λ, as is also shown in section 5.3.3.

The phase and phase velocity for a kink are therefore defined as:

ϕ = 2π

λ
(x(t) − vt) and

dϕ

dt
= 2π

λ
(v(t) − v). (6.8)

Magnetic field B

• Fixed chain stiffness (G = 174 – not too stiff and too flexible)

• Measure critical driving velocity upon increasing N with resolution ~fN
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• Assuming fixed interparticle spacing s

• N = 5: ‘no’ change of U with respect to x

Potential energy of chain as f(x)

Critical velocity for N = 5

x = 0
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Critical velocity for N > 5

x = 0
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Figure 5.7: (a) Plot showing optical landscape as formed in equation 5.4 using � = 3.9 m and s ⇡ 3.1 m
for a chain length of n = 1–5. The optical potential almost disappears in the case of n = 5. (b) Schematic
of a chain with the same length scales probed in (a). Di↵erent coloured particles highlight the repeating
5 particle units in the chain. (c) Plot of well depth as a function of chain length extracted from (a).
Dotted line acts as a guide to the eye.

equation 5.26. An increased field strength leads to a reduced particle spacing and therefore a

reduced value of n
0

, however this e↵ect is relatively small (14% change in n

0

measured).

Physical interpretation

The physical nature of a freely sliding chain can be visualised using figure 5.7. The potential

energy curves experienced by chains with n = 1 – 5 as calculated from equation 5.4, neglecting

U

0

and Umag,n, are plotted in figure 5.7a. Whilst the depth of the landscape increases from one to

two particles, it then decreases until n = 5, where the depth of the potential is almost zero over

all displacements, x. The critical force corresponds to the largest gradient in Uopt which, for a

sinusoidal landscape, is proportional to the depth of the landscape. It can therefore be seen that

a chain of five particles will freely slide, and exhibit superlubricity, if Brownian motion provides

enough energy for it to overcome the small force barrier observed in figure 5.5. Figure 5.7b

shows that for this commensurability, using � = 3.9 m, every fifth particle will be roughly in

the same position of the optical landscape relative to its closest potential minimum (i.e. particle

Potential ‘depth’ as a function of N

• Periodic vanishing of critical velocity
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Figure 5.7: (a) Plot showing optical landscape as formed in equation 5.4 using � = 3.9 m and s ⇡ 3.1 m
for a chain length of n = 1–5. The optical potential almost disappears in the case of n = 5. (b) Schematic
of a chain with the same length scales probed in (a). Di↵erent coloured particles highlight the repeating
5 particle units in the chain. (c) Plot of well depth as a function of chain length extracted from (a).
Dotted line acts as a guide to the eye.

equation 5.26. An increased field strength leads to a reduced particle spacing and therefore a

reduced value of n
0

, however this e↵ect is relatively small (14% change in n

0

measured).

Physical interpretation

The physical nature of a freely sliding chain can be visualised using figure 5.7. The potential

energy curves experienced by chains with n = 1 – 5 as calculated from equation 5.4, neglecting

U

0

and Umag,n, are plotted in figure 5.7a. Whilst the depth of the landscape increases from one to

two particles, it then decreases until n = 5, where the depth of the potential is almost zero over

all displacements, x. The critical force corresponds to the largest gradient in Uopt which, for a

sinusoidal landscape, is proportional to the depth of the landscape. It can therefore be seen that

a chain of five particles will freely slide, and exhibit superlubricity, if Brownian motion provides

enough energy for it to overcome the small force barrier observed in figure 5.5. Figure 5.7b

shows that for this commensurability, using � = 3.9 m, every fifth particle will be roughly in

the same position of the optical landscape relative to its closest potential minimum (i.e. particle

�U
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Figure 5.5: Plot of critical velocity, v⇤
n

against chain length, n for � = 3.9 m and � = 174. Equation 5.13
is shown (grey line). Equation 5.26 is also shown where 2a is replaced with s and is used as a fitting
parameter (red line).

becomes longer, beyond n = 4.

Chain commensurability

While equation 5.13 captures the qualitative behaviour well, it quantitatively predicts the loca-

tion of v⇤n ! 0 incorrectly due to the assumption that the chain is completely rigid. At high

magnetic fields, this is a reasonable assumption, but at lower magnetic fields where chains be-

come more flexible, this assumption may break down. To improve this, the 2a in equation 5.13

is replaced with the average particle spacing, s, which may be extracted from the experimental

data using the following expression:

v

⇤
n =

2F
C

(n+ 1) ⇣
1

����
sin (⇡n (s� �) /�)

sin (⇡ (s� �) /�)

���� . (5.26)

The critical velocity thus becomes zero when

⇡n (s� �)

�

= q⇡ ! n =
q�

(s� �)
, (5.27)
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Figure 5.8: Plots of critical velocity as a function of chain length for landscape wavelengths of
(a) � = 3.3 m, (b) � = 3.4 m and (c) � = 3.7 m. As the commensurability of the chain in the land-
scape changes, so does the appearance of this plot. This is displayed schematically for (d) � = 3.3 m
and (e) � = 3.7 m using a particle spacing experimentally found to be s ⇡ 3.10 m.

1, 6, 11 etc.). This means that each unit of five particles (shown in figure 5.7b) will freely slide

and this is what causes the periodicity predicted in equation 5.26 and seen experimentally in

figures 5.5 and 5.6.

Wavelength e↵ects

The e↵ect of altering the wavelength of the optical potential energy landscape on the critical

velocity of a chain being driven across an optical landscape is now addressed. Plots of the

critical velocity as a function of the number of particles in a chain, n, are shown for three

di↵erent landscape wavelengths in figure 5.8a–c. The general shape of these plots is consistent

with what was shown in figure 5.5, however, the first value at which v

⇤
n = 0 changes dramatically.

This is a direct result of the changing commensurability of � and s and is visualised in figure 5.8d

and e. The relative length scales for � = 3.3 m (figure 5.8d) and � = 3.7 m (figure 5.8e) are

schematically shown, for the experimentally found particle spacing of s = 3.10 m. In both

cases, an additional particle would take the same relative position in the optical landscape as

the first particle, which in this case is a minimum in potential energy. This means that the

displayed chains will freely slide corresponding to v

⇤
n = 0 for n = 18 and n = 6.

For each wavelength, the average particle spacing, s, can be obtained via equation 5.26.

The critical chain length, n
0

, can then be extracted using equation 5.28, which corresponds to

the shortest chain length at which v

⇤
n = 0. Figure 5.9 shows that n

0

decreases as the wavelength

l

Different wavelengths of the landscape
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Figure 5.5: Plot of critical velocity, v⇤
n

against chain length, n for � = 3.9 m and � = 174. Equation 5.13
is shown (grey line). Equation 5.26 is also shown where 2a is replaced with s and is used as a fitting
parameter (red line).

becomes longer, beyond n = 4.

Chain commensurability

While equation 5.13 captures the qualitative behaviour well, it quantitatively predicts the loca-

tion of v⇤n ! 0 incorrectly due to the assumption that the chain is completely rigid. At high

magnetic fields, this is a reasonable assumption, but at lower magnetic fields where chains be-

come more flexible, this assumption may break down. To improve this, the 2a in equation 5.13

is replaced with the average particle spacing, s, which may be extracted from the experimental

data using the following expression:

v

⇤
n =

2F
C

(n+ 1) ⇣
1

����
sin (⇡n (s� �) /�)

sin (⇡ (s� �) /�)

���� . (5.26)

The critical velocity thus becomes zero when

⇡n (s� �)

�

= q⇡ ! n =
q�

(s� �)
, (5.27)

• Periodically vanishing friction

• Entirely determined by interplay of s and l

Theory 77

U(x)

x

!

s

Figure 5.1: Schematic of the Frenkel-Kontorova model. Each particle interacts with the potential energy
landscape and the neighbouring particles in the chain. The only two length scales in this model are the
wavelength of the periodic potential, �, and the particle spacing, s.

tion has been studied [152] and is seen to exist in cold ion traps [69–73]. Colloidal systems have

also been used to model sample-substrate interactions and have successfully modelled a drop to

zero static friction in two dimensions [58, 74, 75]. The one-dimensional analogue cannot have a

mismatch angle between the driving direction and the symmetry of the landscape and instead

the static friction is only governed by the length scales of the particle size and the underlying

landscape and their interaction strength [153].

Here the motion of a finite colloidal chain driven through a static one-dimensional sinusoidal

optical potential energy landscape is studied. A chain is driven at a constant velocity to probe

an Aubry-type transition giving rise to zero static friction. The e↵ects of the chain sti↵ness

and commensurability on chain motion are then studied, and a model is developed for the case

of a completely rigid chain. Next, breathing modes of a flexible chain driven across a periodic

landscape are explored. Finally, oscillations are introduced to the driving velocity to probe

dynamic depinning of a chain for an average driving velocity below the critical velocity. Here,

the e↵ect of the oscillation frequency and the average driving velocity on chain motion is explored

with oscillations lowering the depinning threshold of chains.

5.2 Theory

Until now, the behaviour of a single driven particle in an optical potential energy landscape has

been considered. Here, the behaviour of a finite chain in such a landscape when subject to a

constant driving force is discussed with the aim of predicting the critical velocity of a chain.

Finally, the constant driving force is set below the critical driving force and the e↵ect of adding

an oscillatory driving force on chain motion is explored.



Summary

• Driven colloid particles and chains in periodic optical potential 

energy landscapes show dynamic mode locking

• Colloidal model system allows access to microscopic details

• Phase portrait fingerprint of nature of the mode

• Periodically vanishing friction of finite colloidal chains
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